skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Díaz, Patricio A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 1, 2026
  2. The changes in the cell physiology (growth rate, cell size, and cell DNA content), photosynthetic efficiency, toxicity, and sexuality under variable light and nutrient (phosphates) conditions were evaluated in cultures of the dinoflagellate Alexandrium minutum obtained from a red tide in the Ría de Vigo (NW Spain). The cells were grown at low (40 and 150 µE m−2 s−1), moderate (400 µE m−2 s−1), and high (800 µE m−2 s−1) light intensities in a medium with phosphate (P+) and without (P−). Cultures were acclimated to the irradiance conditions for one week, and the experiment was run for ~1 month. The cell size and DNA content were monitored via flow cytometry. Two different clonal strains were employed as a monoculture (in a P− or P+ medium) or, to foster sexuality and resting cyst formation, as a mixed culture (only in a P− medium). A. minutum growth was favored by increasing light intensities until 400 µE m−2 s−1. The DNA content analyses indicated the accumulation of S-phase cells at the highest light intensities (400 and 800 µE m−2 s−1) and therefore the negative effects on cell cycle progression. Only when the cells were grown in a P− medium did higher light intensities trigger dose-dependent, significantly higher toxicities in all the A. minutum cultures. This result suggests that the toxicity level is responsive to the combined effects of (high) light and (low) P stress. The cell size was not significantly affected by the light intensity or P conditions. The optimal light intensity for resting cyst formation was 150 µE m−2 s−1, with higher irradiances reducing the total encystment yield. Encystment was not observed at the lowest light intensity tested, indicative of the key role of low-level irradiance in gamete and/or zygote formation, in contrast to the stressor effect of excessive irradiance on planozygote formation and/or encystment. 
    more » « less
  3. Toxic and harmful algal blooms (HABs) are a global problem affecting human health, marine ecosystems, and coastal economies, the latter through their impact on aquaculture, fisheries, and tourism. As our knowledge and the techniques to study HABs advance, so do international monitoring efforts, which have led to a large increase in the total number of reported cases. However, in addition to increased detections, environmental factors associated with global change, mainly high nutrient levels and warming temperatures, are responsible for the increased occurrence, persistence, and geographical expansion of HABs. The Chilean Patagonian fjords provide an “open-air laboratory” for the study of climate change, including its impact on the blooms of several toxic microalgal species, which, in recent years, have undergone increases in their geographical range as well as their virulence and recurrence (the species Alexandrium catenella, Pseudochattonella verruculosa, and Heterosigma akashiwo, and others of the genera Dinophysis and Pseudo-nitzschia). Here, we review the evolution of HABs in the Chilean Patagonian fjords, with a focus on the established connections between key features of HABs (expansion, recurrence, and persistence) and their interaction with current and predicted global climate-change-related factors. We conclude that large-scale climatic anomalies such as the lack of rain and heat waves, events intensified by climate change, promote the massive proliferation of these species by creating ideal conditions for their growth and persistence, as they affect water-column stratification, nutrient inputs, and reproductive rates. 
    more » « less
  4. SeveralDinophysisspecies produce lipophilic toxins (diarrhetic shellfish poisoning, DSP and pectenotoxins PTX) which are transferred through the food web. Even at low cell densities (< 103cell L-1), they can cause human illness and shellfish harvesting bans; toxins released into the water may kill early life stages of marine organisms.Dinophysisspecies are mixotrophs: they combine phototrophy (by means of kleptoplastids stolen from their prey) with highly selective phagotrophy on the ciliateMesodinium, also a mixotroph which requires cryptophyte prey of theTeleaulax/Geminigeraclade. Life cycle strategies, biological interactions and plastid acquisition and functioning inDinophysisspecies make them exemplars of resilient holoplanktonic mixoplankters and of ongoing speciation and plastidial evolution. Nevertheless, 17 years after the first successful culture was established, the difficulties in isolating and establishing cultures with local ciliate prey, the lack of robust molecular markers for species discrimination, and the patchy distribution of low-density populations in thin layers, hinder physiological experiments to obtain biological measurements of their populations and slow down potential advances with next-generation technologies. The Omic’s age inDinophysisresearch has only just started, but increased efforts need to be invested in systematic studies of plastidic diversity and culture establishment of ciliate and cryptophyte co-occurring withDinophysisin the same planktonic assemblages. 
    more » « less
  5. At the end of summer 2020, a moderate (~105 cells L−1) bloom of potential fish-killing Karenia spp. was detected in samples from a 24 h study focused on Dinophysis spp. in the outer reaches of the Pitipalena-Añihue Marine Protected Area. Previous Karenia events with devastating effects on caged salmon and the wild fauna of Chilean Patagonia had been restricted to offshore waters, eventually reaching the southern coasts of Chiloé Island through the channel connecting the Chiloé Inland Sea to the Pacific Ocean. This event occurred at the onset of the COVID-19 lockdown when monitoring activities were slackened. A few salmon mortalities were related to other fish-killing species (e.g., Margalefidinium polykrikoides). As in the major Karenia event in 1999, the austral summer of 2020 was characterised by negative anomalies in rainfall and river outflow and a severe drought in March. Karenia spp. appeared to have been advected in a warm (14–15 °C) surface layer of estuarine saline water (S > 21). A lack of daily vertical migration patterns and cells dispersed through the whole water column suggested a declining population. Satellite images confirmed the decline, but gave evidence of dynamic multifrontal patterns of temperature and chl a distribution. A conceptual circulation model is proposed to explain the hypothetical retention of the Karenia bloom by a coastally generated eddy coupled with the semidiurnal tides at the mouth of Pitipalena Fjord. Thermal fronts generated by (topographically induced) upwelling around the Tic Toc Seamount are proposed as hot spots for the accumulation of swimming dinoflagellates in summer in the southern Chiloé Inland Sea. The results here provide helpful information on the environmental conditions and water column structure favouring Karenia occurrence. Thermohaline properties in the surface layer in summer can be used to develop a risk index (positive if the EFW layer is thin or absent). 
    more » « less